Gitlib Gitlib
首页
  • 分类
  • 标签
  • 归档
  • Golang开发实践万字总结
  • MySQL核心知识汇总
  • Redis实践总结
  • MQ实践万字总结
  • Docker数据持久化总结
  • Docker网络模式深度解读
  • 常用游戏反外挂技术总结
  • 读书笔记
  • 心情杂货
  • 行业杂谈
  • 友情链接
关于我
GitHub (opens new window)

Ravior

以梦为马,莫负韶华
首页
  • 分类
  • 标签
  • 归档
  • Golang开发实践万字总结
  • MySQL核心知识汇总
  • Redis实践总结
  • MQ实践万字总结
  • Docker数据持久化总结
  • Docker网络模式深度解读
  • 常用游戏反外挂技术总结
  • 读书笔记
  • 心情杂货
  • 行业杂谈
  • 友情链接
关于我
GitHub (opens new window)
  • 操作系统

  • 计算机网络

  • 数据结构和算法

    • 数据结构

      • 数据结构之单向链表
      • 数据结构之队列
      • 数据结构之二叉树
      • 数据结构之集合
      • 数据结构之双向链表
      • 数据结构之图
      • 数据结构之栈
      • 数据结构之B树、B+树、B*树
        • B树
        • B+树
        • B*树
        • 总结
      • 常见二叉树结构
    • 算法

  • MySQL

  • Redis

  • Nginx

  • MongoDB

  • 其他

  • 计算机基础
  • 数据结构和算法
  • 数据结构
Ravior
2011-02-01
目录

数据结构之B树、B+树、B*树

# B树

B-tree树即B树,B即Balanced,平衡的意思。因为B树的原英文名称为B-tree,而国内很多人喜欢把B-tree译作B-树,其实,这是个非常不好的直译,很容易让人产生误解。如可能会以为B-树是一种树,而B树又是另一种树。而事实上是,B-tree就是指的B树。

B-树是一种多路搜索树(并不是二叉的),具备以下特点:

  • 定义任意非叶子结点最多只有M个儿子,且M>2;
  • 根结点的儿子数为[2, M];
  • 除根结点以外的非叶子结点的儿子数为[M/2, M];
  • 每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)
  • 非叶子结点的关键字个数=指向儿子的指针个数-1;
  • 非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;
  • 所有叶子结点位于同一层;

btree

B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点;

B-树的特性:

  • 关键字集合分布在整颗树中;
  • 任何一个关键字出现且只出现在一个结点中;
  • 搜索有可能在非叶子结点结束;
  • 其搜索性能等价于在关键字全集内做一次二分查找;
  • 自动层次控制;

由于限制了除根结点以外的非叶子结点,至少含有M/2个儿子,确保了结点的至少利用率,其最底搜索性能为:

btree

其中,M为设定的非叶子结点最多子树个数,N为关键字总数;

所以B-树的性能总是等价于二分查找(与M值无关),也就没有B树平衡的问题;

由于M/2的限制,在插入结点时,如果结点已满,需要将结点分裂为两个各占M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并;

性能:性能等价于二分查找,不同于B树的根节点是否平衡的情况。

# B+树

B+树是B-树的变体,也是一种多路搜索树:

  • 其定义基本与B-树同
  • 非叶子结点的子树指针与关键字个数相同;
  • 非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树
  • B-树是开区间;
  • 为所有叶子结点增加一个链指针;
  • 所有关键字都在叶子结点出现;如:(M=3)

btree

B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;

B+的特性:

  • 所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;
  • 不可能在非叶子结点命中;
  • 非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;
  • 更适合文件索引系统;

# B*树

B*是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;

B树、B-树、B+树、B*树之间的关系

B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2);

B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;

B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;所以,B*树分配新结点的概率比B+树要低,空间使用率更高;

# 总结

  • B(B-)树:多路搜索树,每个结点存储M/2到M个关键字,非叶子结点存储指向关键字范围的子结点;所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中;
  • B+树:在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中;
  • B*树:在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率从1/2提高到2/3;
#数据结构
上次更新: 2022/12/01, 11:09:34
数据结构之栈
常见二叉树结构

← 数据结构之栈 常见二叉树结构→

最近更新
01
常用游戏反外挂技术总结
11-27
02
Golang开发实践万字总结
11-11
03
Redis万字总结
10-30
更多文章>
Theme by Vdoing | Copyright © 2011-2022 Ravior | 粤ICP备17060229号-3 | MIT License
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式