分布式系统中CAP理论

只有 系统 达到一定的体量,就不得不面临分布式的问题,分布式系统的最大难点,就是各个节点的状态如何同步。 CAP 定理就是这方面的基本定理,由加州大学的计算机科学家 Eric Brewer 于 1998 年提出。

Eric Brewer 认为 分布式系统有三个指标:

  • C : Consistency 一致性

  • A : Availability 可用性

  • P : Partition tolerance 分区容错性

并且 Eric Brewer 认为这三个指标不可能同时做到! 这个结论就叫做 CAP 定理

CAP

Eric Brewer 说,这三个指标不可能同时做到。这个结论就叫做 CAP 定理。

Partition tolerance

先看 Partition tolerance,中文叫做”分区容错”。

大多数分布式系统都分布在多个子网络。每个子网络就叫做一个区(partition)。分区容错的意思是,区间通信可能失败。比如,一台服务器放在中国,另一台服务器放在美国,这就是两个区,它们之间可能无法通信。

CAP

上图中,G1 和 G2 是两台跨区的服务器。G1 向 G2 发送一条消息,G2 可能无法收到。系统设计的时候,必须考虑到这种情况。

一般来说,分区容错无法避免,因此可以认为 CAP 的 P 总是成立。CAP 定理告诉我们,剩下的 C 和 A 无法同时做到。

Consistency

Consistency 中文叫做”一致性”。意思是,写操作之后的读操作,必须返回该值。举例来说,某条记录是 v0,用户向 G1 发起一个写操作,将其改为 v1。

CAP

接下来,用户的读操作就会得到 v1。这就叫一致性。

CAP

问题是,用户有可能向 G2 发起读操作,由于 G2 的值没有发生变化,因此返回的是 v0。G1 和 G2 读操作的结果不一致,这就不满足一致性了。

CAP

为了让 G2 也能变为 v1,就要在 G1 写操作的时候,让 G1 向 G2 发送一条消息,要求 G2 也改成 v1。

CAP

这样的话,用户向 G2 发起读操作,也能得到 v1。

CAP

Availability

Availability 中文叫做”可用性”,意思是只要收到用户的请求,服务器就必须给出回应。

用户可以选择向 G1 或 G2 发起读操作。不管是哪台服务器,只要收到请求,就必须告诉用户,到底是 v0 还是 v1,否则就不满足可用性。

一致性和可用性,为什么不可能同时成立?答案很简单,因为可能通信失败(即出现分区容错)

如果保证 G2 的一致性,那么 G1 必须在写操作时,锁定 G2 的读操作和写操作。只有数据同步后,才能重新开放读写。锁定期间,G2 不能读写,没有可用性不。

如果保证 G2 的可用性,那么势必不能锁定 G2,所以一致性不成立。

总之,G2 无法同时做到一致性和可用性。系统设计时只能选择一个目标。如果追求一致性,那么无法保证所有节点的可用性;如果追求所有节点的可用性,那就没法做到一致性。

有用就打赏一下作者吧!